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Abstract. The effective complex conductivity,.,s of a two-component material can be
conveniently expressed as an integral transformation of a spectral function. The spectral function
depends only on the geometry of the material, and can be used to caleutatéor any
particular choice of component conductivities. This is a very useful feature if the component
conductivities can be varied (by changing the temperature or frequency, for example) at a fixed
geometry. We present a derivation of the spectral function that identifies it density of
states We have made direct numerical calculations of the spectral function of two-dimensional
random resistor networks. Two-dimensional discrete resistor networks are ideal for this study,
as theY—A transformation can be used as an algorithm to obtain the most detailed results to
date. We identify the structure in the spectral function with clusters in the network. We give
analytic expressions for the first five moments of the spectral function, which are identified as
the expansion coefficients of the effective conductivity in weak-scattering theory, and compare
these expressions with the moments calculated from the simulations.

1. Introduction

We consider the problem of calculating the effective conductivity of a two-component
composite material. If the components have conductiwityand o, which can in general
be complex, then the effective conductivityy, is a function of the geometrg: of the
composite, and oé; ando,. Calculating this effective conductivity is a classic problem
that has been studied extensively for many years [1] but which still remains the subject of
fruitful research.

As a consequence of the linearity of Maxwell's equations, the effective conduatjyity
will be a homogeneous function of degree onejrando, and can be written as a function
of the ratiou = o2/07. In a series of papers on the conductivity of continuum systems,
Bergman [2, 3] argued that.;; is analytic for all values of: except for isolated poles
whenu is real and negative. He also argued that the location of these poles is determined
by the geometry of the composite, and introduced the idea of a characteristic geometric
function. These ideas were developed independently by Milton [4, 5, 6] who also showed
that the singularities need not be simple poles. The formalism was subsequently placed
on a more rigorous footing by Golden and Papanicolaou [7]. By the Herglotz theorem in
analytic function theory [8], a complex function is completely determined by the location
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and residues of its poles so it is natural to write the effective conductivity using a spectral
representation

m(s, G) = 1)

S —X

W_l_/llmadx
o1 0

where we introduce the new variable
s=1/1—u)

for the convenience of restricting the singularitiesgf; to a finite interval, the positive real
axis between 0 and 1. In this paper we will use the variabler this line segment in the
complexs-plane. G represents all the relevant geometrical information from the composite,
m(s, G) is the normalized effective conductivity amdx, G) is the spectral function.

This spectral representation is conceptually very appealing because it summarizes all the
information about the geometry of the composite in a single real function defined on a finite
interval. Despite this, applications to date have been mostly limited to calculating bounds
[5, 6, 9] on the effective conductivity. There have not been many attempts to calculate the
spectral function directly and most of the calculations that do exist in the literature are for
continuum systems and limited to a few isolated defects [10, 11] or approximate calculations
for simple geometries like regular arrays of spheres [3, 12, 13]. The one calculation for
discrete lattices [14] is for very small systems and does not adequately display the structure
of the spectral function. Considering the central role that the random resistor network
has played in the theory of disordered materials, it seems appropriate to present a detailed
calculation of the spectral function for this system.

Theoretical work on spectral functions has had little impact on experimental analysis
to date. This is because accurate model calculations have not been possible, and also
because the spectral function would be very hard to extract from experiments. There
have however been some limited attempts to postulate an analytic form for the spectral
function and compare the predicted effective dielectric constant with the measured effective
dielectric constant of brine-saturated rocks [15, 16]. The concept of reconstructing the
spectral function from experimental data is very appealing because the spectral function
accounts for changes im.¢s in a two-component mixture as /o1 varies due to changes
in the external temperature or the driving frequency or both. Note that if either o> is
complex, therns, s, is also complex. It is hoped that further theoretical developments will
eventually lead to applications involving spectral functions in the analysis of the conductivity
of real two-component composites.

In this paper we present a discussion of the spectral function of two-component random
resistor networks in two dimensions (2d), for the cases of bond substitution and site
substitution on a square lattice. We divide the discussion into three parts. In the next
section we discuss the physical origin of the spectral function and give a defining equation.
In section 3, we present a theoretical overview of the spectral function in the context of the
random resistor network and derive a number of properties of the spectral function based
only on symmetry and duality. We calculate the spectral function in the low-concentration
limit, and use this result to develop an effective-medium theory. We discuss the moments
of the spectral function, which are the expansion coefficients in weak-scattering theory, and
present exact calculations of the first few moments. In section 4, we present numerical
calculations of the spectral function for the complete range of concentrations and compare
the numerical results with theoretical predictions.
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2. The spectral function of random lattices

We consider the problem of determining the effective conductivity and the spectral
function for conductances randomly distributed on a 2d square net with two different
distribution geometries. In the first geometry, which we refer tmasom bond substitution
each bond is randomly assigned a conductanosith probability 1— p and a conductance
o2 with probability p. In the second geometry, referred to msdom site substitutign
each site is assigned labehe with probability 1— p and labeltwo with probability p.
Associated with each site of typene are four conductances,;, along each of the four
bonds, and similarly conductances &f for sites of typetwo. The conductance of any
given bond in the lattice will thus consist of two conductances connected in series, and
will depend on the type of site at each end of the bond. Specifically, the conductance
of bonds between neighbourirane sites iso1/2, the conductance between neighbouring
two sites iso,/2, and the conductance of a bond connectingna site to atwo site is
o, = 0102/(01 + 02). Note that this results ithree types of bond in the lattice, but the
system is still properly regarded as having two components.

For a given lattice substitution rule the geometty is completely determined by
the variablep, the fraction of the second phase. The poles of the normalized effective
conductivity m(s, p) correspond to the resonances of the network. Physically this is most
easily understood by considering a network of pure capacigrs- iwC and inductors
oo =1/(iwL). Thenu = o,/0, is real and negative, and; will diverge at the resonance
frequencies of the system. The singularities are confined teal and negative because
if either o1 or o has any resistive component (a real part)will have an imaginary
component, the system will be damped ang, will not diverge. The variable: positive
and real corresponds to a network of positive resistors, which obviously has no singularities.
The position of the poles depends only on the ratito; and not on the separate values of
o1 ando,, so the location of the resonances could also be understood on the basis of the
less physical model of a network whese and o, are respectively positive and negative
resistors.

For a finite random network the number of poles will be finite, and the effective
conductivity is therefore

Oerf (s, p) apn
Jp) = A 2
m(s, p) o Zn: G—s) @
where thea, are the residues at the polgs In the thermodynamic limit wher&y, the
number of nodes, tends to infinity, the poles ameeared outiccording to some positive
measure [7, 17] and we have the integral representation

Oess(5:P) _ 4 /1 h(x, p) dx 3)
o1 o (5—x)

whereh(x, p) is the spectral function of interest. The spectral function is a positive real

function that is zero everywhere outside the real intewvat [0, 1] but s can have any

complex value. From the definition of equation (3) it is straightforward to calculate the

spectral function by noting that

m(s, p) =

W = lm i e +ie, )] @)

wherex € [0, 1] ande are real. Thus, if we can calculates (s, p) for complexs, we
can obtain the spectral function. In general this is a very difficult problem, because most
algorithms for finding effective properties involve minimizing an energy functional. When
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the energy functional is complex, the search for a minimum becomes the search for a
stationary point which is in general much harder. However, for resistor networks in two
dimensions there is a very efficient algorithm (using e\ transformation [18] which is
algebraically identical for real and complex impedances) to calculate the effective resistance
of the network.

3. Theory

3.1. Geometry

For uncorrelated random lattice problems, where the geometry is completely determined by
the variablep, we have the exchange relation

0.rf (01, 02, p) = Oeps (02,01, 1 — p). (5)

If the spectral function contains all the information about the geometry necessary to calculate
the effective conductivity, there must obviously be some simple mapping betieep)
andh(l— x,1— p) where we have used the identity
1 1
s=——=1—- (6)
1—-o02/01 l-o01/02

which is true for alls and in particular whern is real. The two spectral functions are
not simply equal because of the asymmetric way in whighappears in the definition of
h(x, p) in equation (3). From equation (5) we have

Lhix, p)d
m(s,p)zl_/ haep) e o2, 0 o1 p
0 s —X o1

1 —
() [ 52
s 0 1—s5—x
from which it is fairly straightforward to show that

xh(x,p)=A—x)h(l—x,1—p)+ W(p)x5(x) (8)

where the weight of the delta functioi (p) is

Yh(x,1— p) dx
W(p):l—/ ()‘171’)_ (9)
0 — X

We recognize this as the normalized conductivity (equation (3)) in the limit whetel

(i.e. o2 = 0) which is the dilute random resistor problem of percolation theory [19]. Thus
we expectW(l) = 1 andW(p) = 0 for p < 1 — p.. The delta function at the origin

can be understood physically in terms of the random superconducting—normal network. At
zero frequency, which correspondsste= 0 in the inductor—capacitor network, the inductors
have zero resistance. Fpr> 1— p. the zero-resistance elements percolate and the effective
conductance diverges.

The identity (8) relatingi(x, p) to h(1—x, 1— p) is a general result that appliesaay
uncorrelated random lattice in any dimension. It also applies to infinitely interchangeable
cellular materials [20, 21] but doa®t apply to most continuum problems (see appendix
A) such as spherical inclusions in a host material where the geometry of the host is very
different from the geometry of the inclusion.
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3.2. Duality

Two-component continuum composites in 2d obey the well known reciprocity relation
[22, 23]

0,77 (01, 02)0,7 (02, 01) = 0102 (10)

wherea;, ando,;, are the principal components of the conductivity tensor. This result
(10) is independent of the geometry and is particularly useful in isotropic materials where
oLy = Ug;f_ Straley [24] has shown that for a 2d lattice problem, the reciprocity relation

(10) is replaced by
0ufy (01, 02, L)0yf; (02, 01, D) = 0107 (11)

whereo, ;¢ (01, 02, L) is the effective conductivity of the lattick, ando,s; (o2, 01, D) is the
effective conductivity of thelual lattice D, constructed by placing a bond with conductance
o1, o, perpendicular to every bond df with conductancer,, o;. The 2d square net with
random bondsrot sites) is self-dual and electrically isotropic, so we have the simple result

Oerf (01, 02)0, 1 (02, 01) = 0102 (12)

where we have dropped the reference to the lattice in the argumentg,of This result
can be written in the form

m(s, pym(l—s,p) =1 (13)

For random lattice problems, we also have the exchange relation (5), which when combined
with (12) yields

Ocfr (01, 02, P)Oesr(01, 02,1 — p) = 0102 (14)

or
1
m(s, p)ym(s,1—p)=1——. (15)
S

The results (14) and (15) are special to the random bond substitution problem on the 2d
square net, and doot apply to the random site substitution problem. This is because in
random site substitution there are effectively three types of bond and thus it is not possible
to construct a dual lattice with; ando, exchanged.

Atp=1—-p= % equation (14) reduces to

Ocff (01, 02) = /0102 (16)
or
m(s,1/2) = |2 =1 (17)

From this we can derive the exact spectral function for the 2d square net with random bond

substitution at percolatiop = p, = 3,

h(x,1/2) =

1 /1-—
- * (18)
T
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3.3. The dilute limit

In the low-concentration limit p « 1, it can be shown that for both site and bond sub-
stitution, the effective conductivity can be written as

(02 — 01)
pi(oz/or—1) +1
where p; is determined from the initial slope of the effective conductivity when= 0.
For a 2d square-ndiond substitutionp; = % while for site substitutionp; = 1—1/7 =
0.682... [25]. Rewriting (19) using the-variable we have

O.f(01,02, p) =01+ p (19)

m(s,p)=1- P (20)
S — p]
from which, using equation (4), we obtain the spectral function
h(x, p) = p&(x — pr). (21)
If we now consider thénigh-concentration limitl — p <« 1, we have similarly
(01 —02)
e vor,1—p)=o02+(1~— . 22
O (02, 01 p) =02+ ( p)Pl(Ul/UZ_ D11 (22)
We note thatn (s, p) is defined by normalizing. ;s by o1, and is given by
pi(1—p) (p—rn
m(s,p) =1— — 23
P A= pDA=s—pn  @—pos (23)
which leads to the spectral function
pi(1—p) (p—r1)
hix, =—"81—x—pp+ 5(x). 24
(x. p) d= ) ( R — (x) (24)

The second term in equation (24) is an example of the term invoMiig) in equation (8).

3.4. Effective-medium theory
An effective-medium theory for the conductivity can be constructed from the dilute results
of the previous section in the usual way [26]:
(02 — 0cry) (01— 0¢rr) _
Py pi1(02/0err — 1) 1+ pr(or/oers — 1)
This leads to a quadratic equation fer= o.¢r /01 which can be solved, yielding

(pr —p)
S

+@-p

0. (25)

1
m(s, p) = 2(l_pl)|:l—2p] +

N Ve —=pn2+p@2s—1p — 1) — p(L— p)}

N

(26)

When the function in the square root is negatim€x, p) will have an imaginary part, and
so if we define

f,p,p)=pl—p) —(x—p)?—p2x—12p; -1 (27)

and use the definition of the spectral function (equation (4)), we extract the general form
of the effective-medium spectral function:

V&, p,pr)
h(x,p) =1 2nx(1— pyp)
0 otherwise.

ng(va,Pl) (28)
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For random bond substitutiop; = % and equation (28) has the simple form [11]

Jra=p) - (= 12 .
h(x, p) = g O0<pd-p—-(x-3) (29)

0 otherwise.
Note that this is symmetric under the exchange> 1 — p and coincides with the exact
result atp = p; = % given in equation (18),

1 /1—x
h(x,pc)=; .

(30)
X

In effective-medium theory, the percolation thresholdpis= 1 — p,. For random bond
substitution this coincides with the exact percolation thresheld- %

3.5. Moment expansions

It is often useful to consider thmomentof the spectral function, which can be found from
the definition (3), by doing an expansion of the denominator in the integrand to obtain

[ele] 1 1
m(s,p>=1—2smf hx, p) dv (31)
r=0 0
or
=\ 1 (p)
mGs.p)=1-Y_ "7k (32)
r=0

whereu, (p) is therth moment of the spectral function. This expansion corresponds to the
weak-scattering limif27], usually written as

Telt =1—Zur(p)(01;102) (33)

o1

which is useful when the contrast between the two componanédo, of the composite
is small, i.e. wheri(o1 — 02)/01| = |1/s| < 1. For a particular class of composites, known
as infinitely interchangeable composites [20] (which includes all random lattice problems),
it has been proved [28] that,(p) is a polynomial inp of degreer + 1.

We now derive a number of recursion relations between the different momeqts.
From equation (8), which is a consequence of the exchange relation equation (5), we can
write

1 1
/ x"+lh(x,p)dx=/ X"(1=x)h(l—x,1— p) dx (34)
0 0

which leads to the general recursion relation

1 (p) + (=) a1 = p) = Z(—l)"1< ! )ll«r(l - p). (35)
r=1 r=

1

This result (35) is true fomny lattice with uncorrelated random substitution. The first few
terms are

pna(p) — n1(l—p) =0

p2(p) + pu2(1— p) = u1(1— p)

n3(p) — u3(d — p) = ua(1 — p) — 2p2(1 — p) (36)
pa(p) + pa(l — p) = ua(1 — p) — 3p2(l — p) + 3usz(l — p)

us(p) — us(1— p) = p1(1 — p) — 4uz(l — p) + 6us(l — p) — 4ua(l — p).
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For random bond substitution where we have both duality (equation (12)) and the
exchange relation (equation (5)) there is one additional set of independent recursion relations.
The most useful form is derived from equation (15) and has the general form

a(P) + 1ta(L = p) =D ptra(P)ta—r (1= p). (37)
r=1

The first few terms are

pua(p) + n1(1— p) = po(p)po(l — p)

p2(p) + (1 — p) = po(p)ua(l — p) + na(p)io(l — p)

u3(p) + u3(1— p) = po(p)pu2(l — p) + ua(p)pua(l — p) + pna(p)o(l — p)

pa(p) + a1 = p) = po(p)pua(l — p) + ua(p)pna(l — p) + pa(p)us(l = p) (38)
+ uz(p)po(l — p)

ws(p) + sl — p) = po(p)ua(l — p) + na(p)ius(l — p) + n2(l — p)pa(p)
+ n3(p)ui(l— p) + pa(p)po(d — p).

Combining (36) with (38), it is possible to express i momentsi,,.1(p) in terms
of all the lower-orderevenmoments,ig, Wo, ..., i2,. The first three odd moments are
given by

1
n1(p) = Suo(p) [1— no(p)]

1
Hs(p) =g [1o(P)* — Buo(p)® + Bio(p)® — 2uo(p) — Buo(p)2(p) + 12ua(p)]
5 1 , 5 1 3
us(p) = élm(p) — uo(p)pa(p) — éliz([?) - éliz([?) — éuo(p) wu2(p) (39)
5 ) 17 1 6 1 5
- EMo(p) m2(p) + Zuo(p)uz(p) - TE;MO(p) + éMo(P)
25 . 19 s 7 , 1
= Euo(p) + §M0(P) - zuo(p) + EMO(P)-

For theevenmoments,u,, (p), it is only possible to obtain an expression for the even part
of the moment,%[uzn(p) + u2,(1 — p)], in terms of the lower-ordeevenmoments. The
first three such even moments are

1 1

5 [1o(p) + o1 — p)] = >

1 1 _1! 1

> [12(p) + p2(1— p)] = 2H0(P) [1— no(p)] (40)
1

2

1
[1a(p) + na(l— p)] = 1—6[3uo<p>4 — 12u0(p)® + 1110(p)? — 210(p)

— 240(p)2(p) + 12u2(p)].

Obviously if all of the moments, both even and odd, could be expressed in terms of the
lower moments, then the problem would be soluble in closed form, which it is not.

We can now derive the low-order moments for both site and bond substitution, using a
technique that maps the expansionpirdiscussed in section 3.3 above to the perturbation
expansion in Ls [20]. In the low-concentration limit we use (21) to obtain

Wn = ppy for p < 1. (42)
In the high-concentration limit we use (24) to obtain
pn=Q=pprA—p)"~t  forl-p<i (42)
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Writing ., as a polynomial inp of degreen + 1 which is correct in both limits (smajp
and small (- p)), the zeroth moment must have the form

Mo =p (43)
and the higher moments far> 1 are

pr[A=p)"t+ pit [A—p)t=p) ]
L(p) = pl— 1 2p —1
tn(p) = p(1—=p) > + [(1_p,)n—l+p7‘1]( p—1
+ aﬁp(l—p)JraE(Zp—1)p(1—p)+-~-} (44)

where the coefficients, and higher are as yet unknown, except that to ensureuth@t)

is a polynomial of degree + 1 we requireq), = O for all m > n + 1. The polynomial

(44) has been separated into terms that are even (odd) under the exghande- p. The
result (44) is a general result for all lattices where there is only one type of site and the
geometry only depends gn The quantityp; can be determined from explicit calculations
that can be done in the single-impurity limit [25]. This useppfmakes a useful connection
between the single-impurity (strong-local-scattering) and the weak-scattering limit.

3.5.1. Random bond substitutionFor random bond substitution on the square met= 1,
so the leading term in (44) involvin@p — 1) is zero. We therefore have

1-—

oy = PP [k dp - p) b @p - DpA-p ] (@)

This immediately implies that
_ _pd-=p) _pQ—-p)

o= p 1= P2 =" (46)

The recursion relations, equation (39), give
1-—
py= 2L P [1+pQ-p)]. (47)

8

These moment results (46) and (47) for random bond substitution were previously derived
by Bruno and Golden [28] using a rather different approach.
The recursion relations (39) and (40), coupled with equation (45), imply

p(l—p)

a= "1 [1+3pL=p) +ai@p - Dp - p)] (48)
and

_p(l—p) 4 4 4 2 2
s = ——z— [1+ (6 —ad) p(1 — p) +4ag(2p — ) p(L — p) + (24 4ag) p*(1 — p)?]

32
(49)

whereag1 is an unknown constant. The moments and 7 could be similarly obtained
with two unknown constants.
In the discussion of the numerical simulations in section 4.3, we obfaia 0.1+ 0.5
by fitting equations (48) and (49) to the simulation data. This suggestadtmagy in fact
be equal to zero which, if true, gives the interesting result that all of the momertts s
are symmetric under the exchange— 1 — p. This cannot be true in general fall of the
higher moments, because if it were the recursion relations (equations (35) and (37)) would
determine all of the moments, and thus we would kneyy, p) exactly.



4398 A R Day and M F Thorpe

It is interesting to compare these results foi(p) to us(p) with the effective-medium
moments by expanding equation (26) in powers &f and settingp; = % We find that,
except forug, all of the moments are symmetric under the exchamge 1 — p, and that
they coincide with the exact results forp(p) to usz(p) and with the symmetric part of
wa(p) (which is known exactly). That is, the effective-medium valuesifofp) and us(p)
are given by equations (48) and (49) with = 0. In a diagrammatic evaluation of the
moments on a three-dimensional cubic lattice, Bergman and Kantor [29] also found; that
and u, were given exactly by effective-medium theory.

3.5.2. Random site substitutionFor random site substitution on the square pet—=
1-1/n and we have

B @ -D[1+ @ -1 [1- @ — DY
tn(p) = p(—p) o {1 [+ (=11 @Cp-1
+ aZp(l—p)JraE(Zp—1)p(1—p)+---}. (50)
This immediately implies that
Mo = p
_pl=p)@ -1
=y (51)
M2 = p(l_;):n —D [l+ (2_71)(217— 1)] .
T

In this case the only recursion relation is equation (35) which unfortunately gives no further
information aboutus. We do know thatuz has the form

— 2 _ — —
ngzp(l p)(r®—2n+2)(r -1 [1_|_ 2—mm

273 (72— 27 +2)
and fitting equation (52) to the numerical data givgs= 0.14 + 0.07, as discussed in
section 4.3.

We can compare these results fog(p) to us(p) with the effective-medium moments
which can be obtained by expanding equation (26) in powers/eofahd settingp; =
1-1/m. We find that the effective-medium values fap(p) to u2(p) coincide with the
exact results (equation (51)) and that the effective-medium valuecfop) is given by
equation (52) witha} = (107 — 272 — 10)/(7? — 27 + 2) = 0.3001.... For thesite
problem the effective-medium theory is not symmetric under the exchangel — p.

<@—n+dmLmﬂ (52)

3.5.3. General remarks.In a lattice problem where there afd inequivalent impurity
bonds (sites) the conductivity in the dilute limit may be written as

1 P
m(s’p)_l_MXi:S—pi
where the sum is over th&f different types of bond (site) aneét1/(1 — p’) would be
the initial slope of the conductivity curve if vacant bonds (sites) ofithetype only were
present. When properly averaged over all types of bond (site), the initial slope of the
conductivity curve is

-1 1

M - 1-pt’

(53)
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In the weak-scattering limjt|s| > 1, we can expand equation (53) to obtain

m(s,p>=1—§—s—”2<m>—§<p§)+-~-- (54)

where the angular bracket denotes an average over the different types of impurity bonds,
ie.
n 1 i \n
(Pi) =7 21"
There is a similar result in the high-concentration limit-Jp <« 1, where

1-— 1-
me,p)=1-2 2Py -2 =y (55)
s s 53

From these two equations, (54) and (55), we can develop a form for the moment polynomials

similar to equation (44):

(pr@ = pp" 1)+ ((pD)™) [1 (pr@—=pp"=t) = (pi")
2 (@ = pp*=1) + (p1")

un(p) = p(1—p) 2p -1

+a§p(1—p)+~-~]. (56)
In particular, the leading terms are

Mo =p
u1=p@—p){prn
(57)

1 —2(p?
wo= Spa— o |14 P 2P G, gy ]
2 {p1)

We note again that even though tppé are determined from the single-impurity strong-
scattering limit § = 1), they determine the low-order terms of the weak-scattering
expansion, up ta.,, without any calculation of defect interactions. For continuum systems,
determiningu, requires the calculation of the interaction between defect pairs, as discussed
in appendix A.

3.6. Critical properties

The property of the random resistor network that has received the most attention from
physicists is the behaviour of the effective conductivity at the percolation threshold [30].
If the host hass; = 1 and the defect i, = 0, then there is a percolation threshgid

such that the effective conductivity is zero fpr> p. and non-zero fop < p.. Near the
percolation threshold the effective conductivity scales as

Oefs ~ (pe — p)' for (p. —p) K1 (58)

wherer is the conductivity exponent. Noting that = O corresponds te = 1, we can see
from equation (3) that this critical behaviour must be controlled by the spectral function
nearx = 1 where the denominator of the integrand is very small. There has been some
previous work [14, 16] on the scaling behaviour of the spectral function, but it was hindered
by a lack of detailed knowledge of the spectral function.

It is convenient to start the discussion of the scaling behaviour within the effective-
medium approximation and then extend the ideas to the more general result. In effective-
medium theory there is a percolation thresholdpat= 1 — p;. For p < p. the spectral
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Figure 1. The geometry of the network withondsubstitution. (a) A single defect in a network

with L = 4. The dark lines represent perfectly conducting busbars. (b), (c), (d) The most
strongly interacting pairs of defects where the solid line indicates the location of the defect
bonds. For the orientation shown, the single defect (e) does not couple to the applied potential
and makes no contribution to the spectral function.
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Figure 2. The geometry of the network witkite substitution. The small capacitors have
conductanceo;, the small inductors have capacitaneg, and the large capacitors have
conductancer1/2. (a) A single defect in a network with = 4. The dark lines represent
perfectly conducting busbars. (b)—(e) The most strongly interacting pairs of defects where the
hexagons indicate the locations of the defect sites.

function does not fill the entire [A] interval and there is a gap in the spectrum such
thath(x, p) = 0forx > 1— A. As p approacheg, this gap decreases and goes to zero as

A~ (p.— p)~ (59)
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Forx < 1— A the spectral function has the form
h(x,p) ~+/(A—x—A) for(l—x—-A) <1 (60)

We introduce a new variable = 1 — x — A, and break the integral representation of the
normalized conductivity, equation (3), into two parts:

A U
1,p)~1— V7 dy — dy. 61
m(1, p) Oy+AyAy+Ay (61)

The second integral is insensitive to the smalland is of order one. The first integral
depends strongly onn and we obtain

m(1, p) ~ VA. (62)

Thus, within effective-medium theory we hawg(1, p) ~ (p. — p). This result, that the
effective-medium conductivity exponentis= 1, is well known [19] and can be obtained
directly from equation (26).

More generally, we would expect the gap (59) to scale with an exponent different from
two and that neap, there will be some exponemtsuch that the spectral function has the
form

h(x,p) ~ (1 —x—A)" (63)

near the edge of the gap. To give the correct scaling behavious,fer we must have

A ~ (p. — p)"/". In 2d we have the exact form of the spectral functiorpafor random

bond substitution on the square net (equation 18), and by universality we expect the same
behaviour for all lattices. This would indicate that % in 2d and thatA ~ (p.—p)% where

t = 1.3 is the conductivity exponent [31] in 2d. In the numerical simulations presented
later we found evidence of the gap, but the method did not enable us to determine the
critical exponents.

4. Simulations

We have calculated the effective conductance of the random networks with a very efficient
algorithm [18] that uses thE—A transformation to calculate the equivalent conductance of
circuits in 2d. The simulations were performed on a square lattice oy (L + 1) bonds

with perfectly conducting busbars placed along the two shorter edges. The conductances of
the remaining bonds are assigned randomly, according to the randonobdinel random

site substitution rule, and the equivalent conductance between the two busbars is calculated.
An example of the network with. = 4 and one defect is shown for bond substitution

in figure 1(a) and for site substitution in figure 2(a), where we have drawn networks of
inductors and capacitors to emphasize the concept of the spectral function as a density
of states. The results presented are for= 64, averaged over 32 realizations at each
probability p. All of our simulation results were checked against simulations on lattices of
up to L = 256, and no significant differences were found. Weoset 1 and determine

from s wherex, the real part of, is chosen at 240 equally spaced values across the interval
(—0.2,1.2) ande, the imaginary part of, has some small positive value, the exact value

of which is not very important. The spectral function is then determined from equation (4).
The finite value ok broadens the poles into Lorentzians and thus smooths the final spectral
function. The smaller the value af, the greater the resolution of the structure of the
spectral function, and the greater the number of values tiat are needed to give an
accurate representation. A valuee«f 0.003 was found to give acceptable results, partly
determined by the agreement with the sum nuge= p given in equations (46) and (51).
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Figure 3. The spectral functiom:(x) for a two-dimensional square net with randdyond
disorder at different defect concentratiops The solid lines show data from the simulations.
The dashed lines are for the effective-medium theory, equation (29).p Eer0.5 the dotted
lines show the spectral function ét— p) transformed via equation (8). Note that the horizontal
scale is the same for all graphs but the vertical scales are different.

4.1. Random bond substitution

The spectral functions for random bond substitutionpat= 0.02, p = 0.1, p = 0.3,

p =p. =05 p=0.7andp = 0.9 are shown in figure 3. In all of the panels the solid
line shows the calculated spectral function and the dashed line is for the effective-medium
theory, equation (29). Fop « 1 the defects are essentially isolated and the spectral
function is a single peak centred.at= % Interpreting this as a network of capacitors with
conductancer; = iwC and a few isolated inductors with impedangge= 1/(iwL), this
corresponds to a resonancesat= 1/+/LC with the corresponding

x=1/[1+ (@’LC) Y = %
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Figure 4. The spectral function(x) for a two-dimensional square net with randsite disorder

at different defect concentratiops The host percolates for < p. = 0.41; the defects percolate
atp > 1— p. = 0.59. The solid lines show data from the simulations. The dashed lines are for
the effective-medium theory, equation (28), wjth = 1 — 1/x. For p > 0.5 the dotted lines
show the spectral function &l — p) transformed via equation (8). Note that the horizontal
scale is the same for all graphs but the vertical scales are different.

The width of the peak in the spectral function is determined entirely by the value A$

p is increased other peaks, resulting from interacting defects, appear. In the first frame of
figure 3, we indicate the position of the resonances associated with the four most strongly
interacting pairs of defects and the associated peaks in the spectral function can be clearly
seen. The labels b to d correspond to the labels of the defects illustrated in figure 1. Note
that the positioning of these resonances is symmetric aal:)eut%L because the square lattice

is self-dual and c defects are the dual of d defects. The b defects are self-dual and two
resonances are symmetrically placed abost % Note that the orientation of the defects is
important; defects a, ¢ and d make no contribution to the density of states when the defects
are oriented parallel to the busbars. In this sense the calculated spectral function is like a
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Figure 5. The momentsu, (p) of the spectral function, scaled by the prefacton, p) =
(%)"p(l — p) for a two-dimensional square net with randdmond disorder. The inset shows

the unscaled moments to show the overall shape of the moment curve. The solid lines show the
exact theory forui(p) to uz(p) and the dashed lines show the theory farand us with one
unknown parameter, which we have chosen to be zero.

projected density of states, only detecting those states that couple to the given boundary
conditions (an applied external field). However, averaging over many samples is equivalent
to averaging each sample over both orientations, so the final spectral function is that of the
isotropic material and is like the full density of states. Note that the width of the central
peak atp = 0.02 in figure 3 is broadened by both the finideand by more distant weakly
interacting pairs.

As p is increased the spectral function expands to fill more of the intervdl][@Gnd
loses much of its structure, approaching the smooth curve of the effective-medium theory.
At p = p. = % effective-medium theory coincides with the exact result, equation (18).
The simulations agree very well with the theory and show the square-root edge 4t,
suitably smoothed because of the finiteand the square-root divergencexat= 0. Note
that although we have the exact form for the spectral functiom atp, = % this provides
no information about the critical behaviour: the critical behaviour is controlled by the way
the edge of the spectral function approaches 1, which is clearly very difficult to extract
from the simulations.

Forp > % we plot i(x, p) evaluated directly, and evaluated from the transformation
[(A—x)/x]h(1—x, 1— p) as given via equation (8). The transformed curve is a good fit to
the direct curve and the contribution of the delta function (suitably broadened) can also be
clearly seen. The vertical scale is chosen to show the structure away from the origin. This
scale truncates the curve at the origin which peaks at a value of about 40f@.90. The
weight of the delta functioiW (p), determined from the simulations, is found to decrease
approximately linearly fromW (1) = 1, to W(%) = 0, as expected from equation (9). We
note that in all the figures the non-zero valuexgt, p) for x < 0 andx > 1 is just a result
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Figure 6. The momentsu, (p) of the spectral function, scaled by the prefacton, p) =

(r ="+ 1) p— p)/(2x") for a two-dimensional square net with randaite disorder. The

inset shows the unscaled moments to show the overall shape of the moment curve. The solid
lines show the exact theory far;(p) andu2(p). The dashed line shows the theory for with

one fitted parameter.

of the small finite value ot.

4.2. Random site substitution

The spectral functions for random site substitutiorpat 0.02, p = 0.2, p = p. = 0.407,

p =05 p=1—p. =0593, andp = 0.8 are shown in figure 4. Note that is the
fraction of defectsbut we refer to the percolation threshold as the point wherétisgjust

spans the system and thps = 0.407 and 1- p. = 0.593. In all of the panels the solid

line shows the calculated spectral function and the dashed line shows the effective-medium
theory spectral function, equation (28), with = 1—1/7. The discussion below is similar

to that of the random bond substitution problem but there are some important differences,
most notably because there is no duality relation (12) for the random site problem.

For p « 1 the defects are essentially isolated and the spectral function is a single
peak centred at = p; = 1 — 1/x. We interpret this as a network of capacitors with
impedancer; = iwC with a few isolated site defects of the type shown in figure 2(a). This
corresponds to a resonancewat /(7w — 1)/LC. As p is increased, other peaks, resulting
from interacting defects, appear. In the first frame of figure 4 we indicate the position
of the resonances associated with the four most strongly interacting pairs of defects, and
the associated peaks of the spectral function can be seen. The labels b to e correspond
to the labels of the defects illustrated in figure 2. There may be more than one resonance
associated with each type of defect but only those most widely separated from the single-
defect peak are marked. Note that the spectral function is not symmetric;abﬂét even
in the dilute limit, when there is no symmetry based on duality. Once again, the orientation
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of the defects relative to the busbars is relevant: defects b and ¢ have the same structure
but different orientation and contribute to different resonances.

As p approachegp. the spectral function expands to fill the interval 10, and the
total weight increases. However, unlike in the random bond problem, most of the structure
is retained and the agreement with effective-medium theory doésmprove asp,. is
approached. This indicates that the smoothness of the spectral function and the agreement
between the simulations and effective-medium theory in the bond case is a very special
result, following from the self-dual nature of the square lattice in the bond problem. Note
that atp,, the spectral function still appears to have a square-root edge singularity at
which is expected from universality. The spectral function does not diverge=a0.

For p > 0.5 we ploth(x, p) evaluated directly and evaluated from the transformation
[(A—x)/s]h(1 — x,1 — p) as given in equation (8). The transformed curve is a good
fit to the direct curve, and ap = 0.8 the contribution of the broadened delta function
at x = 0 can be clearly seen. Note that, although there is a sharp peak=ad when
p=1—p.=059..., the weight of the delta function at the origin is zero. A plot of
the weight of the delta functionV (p), determined from the simulations, is a curve that
decreases fronW (1) = 1, with an initial slope of-1/(1 — p,), to W(1 — p.) = 0, as
expected from equation (9). Again we note that the non-zero valugxfp) for x < 0
andx > 1 is just a result of the small finite value of

4.3. Moments

In figure 5 we plot the moments of the spectral function for randmmnd substitution,
evaluated by numerical integration of the curves presented in figure 3. The inset is a plot of
w1 to us and it is clear that the shape of the moment curves is dominated by the prefactor
of equation (45),

cn, p) =p(1—-p)/2
and that the moments decrease rapidly with increasingn the main body of the figure
we have plotted the moments scaled by the prefactey p). The lines are the theoretical
curves from section 3.5: the solid lines fpn to us are known exactly and given by
equations (46) and (47). We see that the simulations are an excellent fit to the theory. The
systematic deviation negr = 1 occurs because of the contribution from the broadened
delta function att = 0. The dashed lines for,4 and us are for equations (48) and (49)
with the parametexg chosen to be zero (see the discussion in section 3.5).

In figure 6 we plot the moments of the spectral function for randui@ substitution,
evaluated by numerical integration of the curves presented in figure 4. The inset is a plot
of u1 to us and although the shape of the moment curves is dominated by the prefactor of
equation (50),

cn, p) = p(l—p)l@ —-1"+1]/(27")
the contribution of the term proportional t@p — 1) is clear. Again the moments decrease
rapidly with increasingz. In the main body of the figure we have plotted the moments
scaled by the prefactar(n, p). The lines are the theoretical curves from section 3.5: the
solid lines foru, to u, are known exactly and given by equation (51). The dashed line for
ns is for equation (52) with one fitted parameteg, = 0.144. We see that the simulations
are an excellent fit to the theory with a systematic deviation pearl resulting from the
contribution of the broadened delta functionxat= 0. The data indicate that the term in
the braces of equation (50) that is linear@p — 1) is the most important, and that the
higher-order coefficients], must be very small.



Random resistor networks 4407
5. Conclusions

We have completed a study of the spectral function for 2d random resistor networks with
square-net geometry. These systems were chosen as they are ideally suited for large-scale
computer simulations, because theA transformation can be used. This leads to much
more detailed results for the spectral function, at all compositions, than have ever been
obtained previously. We have shown that the spectral function can be regarded as a density
of states, and we have given the first five moments of the bond and site versions of the
two-component resistor network.
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Appendix A. Some related continuum results

It is instructive to review some previous results for continuum systems in the spirit of the
lattice results discussed in this paper. For a two-component compogitdimensions the
weak-scattering results give [27]

_pd-p)
- d

for all volume fractionsp of inclusions and are independent of tteapeof the inclusions.
In the low-concentration limit, the spectral function has the form

o= p 1 (A1)

1 .
h(x, p)=py Do d(x = pl) (A2)

where the sum is over the, types of inclusion (see section 3.5) and enough orientations to
ensure that the composite is isotropic. For example, elliptical inclusions must be averaged
over two perpendicular orientations. In general, theand thep} are very difficult to
calculate but the results are known for a few special cases. Equation (A2) implies the
following sum rules:

1 1 ;1
EIZ%’:]- EIZ%P]:E (A3)
and that the higher-order moments will have the form
p i\n
Ha(p) = 3 Z“f(p’) +0(p?). (A4)

For continuum problems, the geometry is not determined solely by the volume fraction
and the low-concentration limit isot equivalent to the high-concentration limit with and

o, exchanged. For example, a uniform matrix with conductivitycontaining a volume
fraction of p « 1 of isolated spheres with conductivigy is not equivalent to a matrix
with a high concentration of overlapping spheres with conductivityand a small volume
fraction of interstitial regions with conductivity,. Nevertheless, it is interesting to consider
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the high-concentration limit and extract some information about the moments. The spectral
function in this limit has the form

1-— 1-— .
h(x,p)=[17—(Mﬁp)Zﬁi}S(X)Jr( ’”me—:m (A5)

Mg

where the coefficient of the delta function at the origin is chosen to get the zeroth moment
o correct, and thes; andg’ have no simple relation to the and p’. The delta function
at the origin makes no contribution to the higher-order moments so we have

1-p i 1-p
ni(p) = 7M,3 Ei Big; = 7 (AB)
and forn > 2
1 - p i\n
[a(p) = M, 2,- Bi(g))" + 01— p)*. (A7)

To get both the low-concentration limj, <« 1, and the high-concentration limit4p <« 1,
correct, the general form for the moments must be

ta(p) = p(L— play {1+ a52p — D +a;p(L—p)+---} (A8)

wherea” = 0 for m > n + 1. The most important feature of equation (A8) is that for all
n > 1, the momentg:, are proportional tgp(1 — p).

In generalu1(p) is the highest known moment [27], and is independent of the shape of
the inclusion. Unfortunately, unlike in the lattice problems discussed in this paper, knowing
the single-defect solution does not provide enough information to calculgie), and it
is necessary to calculate the scattering from interacting defects, i.e. to calculate the low-
concentration conductivity correct to ordgf. This has been done for circular inclusions
in 2d [32] and spherical inclusions in 3d [33, 21, 34]. Then, making the assumption that
un(p) is a polynomial inp of degreen + 1, we can use the methods of section 3.5 to
obtain u,(p) valid for all p. Circular or spherical inclusions are not examples of infinitely
interchangeable materials so there is no rigorous proof [28]ithgb) is a polynomial in
p of degreen + 1, but it is probably correct, and we assume it to be so. In 3d this leaves
w2 as the highest moment known [20] but in 2d we can use the reciprocity relationship
[22, 23] to obtainus(p).

Following Djordjevi et al [32] we have that for circular inclusions in the low-
concentration limit

p S5 5 3
=£_= . A

pa(p) = = 15p" + 007 (A9)

Writing this in the form of equation (A8) we obtain the result, valid for ail
1- 1

p2(p) = % [l - é(Zp - l)} . (A10)
The reciprocity relationship is

m(s, pym(L—s,p) =1 (Al11)

which is formally identical to equation (13). This implies a recursion relationship from
which we can generate the exact third moment:

_p(l—p) 1 1
pa= " [l - 5@ -ZpQ- p)] : (A12)

Note that there is no relationship equivalent to equation (15) for this problem.
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To obtain any higher moments using this method would require calculating the effect of
more than two interacting defects and would be extremely difficult. From these moments
to, 11, H2, andus, we can generate the weak-scattering resultfgr using equation (33).
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